White Paper 48VDC

The Voltage rises

The idea of a higher vehicle electrical system voltage in automobiles is not new. As early as the 1990s, a 42V consortium was set up. However, due to a lack of standards, this approach was not successful. But now everything is to change.

Electricity used to be minimal in automobiles. They mainly ran mechanically. Electric windows? They didn’t exist. For this manually operated handles were used. Today, a whole host of electrical functions such as seat heating, comfort and assistance systems draw a lot of electricity from the battery. In a 12 V vehicle electrical system, higher and higher currents have to flow. To prevent this on-board network from surrendering, manufacturers are now installing a second, stronger network in the car in parallel – with 48 V direct current.

Advantages

A fundamental advantage of a 48 VDC vehicle electrical system is the lower loss of energy transmission. This is due to lower currents with identical power which results in a considerable savings potential in the design of the electrical conductor cross-sections. This is reflected positively in the weight of the vast quantities of cables installed in modern vehicles.

The 48 VDC vehicle electrical system also enables economical energy recovery and storage during braking (recuperation). The electric motor acts as a generator. In the case of high torque and/or power requirements, however, this system can also support the combustion engine by operating the electric motor in the reverse direction as an electric motor supplied from the 48 VDC battery. This process is also known as a “booster”. By completely decoupling the combustion engine from the on-board power supply, it can even be switched off completely while the vehicle is in motion. In contrast to conventional idling, no losses occur in the combustion engine during “sailing”. This can result in significant fuel savings.

Reflowable Thermal Switch

RTS is a particularly compact overtemperature protection device for power semiconductors in SMD technology. It was developed to protect highly integrated power electronics from overheating, such as those used in the automotive, medical and many other industries.

Recent Articles
Learn more about Optocoupler Design for EMI Immunity by Broadcom & EBV
Join the IEEE Webinar on 26th May, 4pm CET – Optocoupler Design for EMI Immunity Also available on demand This webinar takes a close look into... Read Article
6 use cases for adaptable technology and its impact on automotive trends
Overcome technological complexity in automotive design with Xilinx and Avnet Silica The automotive industry is a highly competitive space. In the blink of an eye, a... Read Article
Traco Power partners with oemsecrets to include real time distributor inventory on new website
Traco Power, a leading company for high quality industrial and medical DC/DC and AC/DC power conversion products and customized power solutions has launched a new, improved... Read Article
Up for a challenge? Play Mouser’s robot game
Mouser are launching their Motor Control Series with a twist on a classic arcade game! Help Matt, the Mouser Robot, find his way through the Mouser... Read Article
ON Semiconductor 48V automotive applications
The right components to meet the ambitious new standards of the automotive industry In modern car design, one of the most significant developments is the shift... Read Article
Latest Solutions from CUI & Digi-Key
VOF-C Expansion Series Power Supplies DIN Rail AC-DC Power Supplies VMS Medical AC-DC Power Supplies 60601-1-2 4th Edition EMC Medical Power Supplies 36 W Medical Desktop... Read Article