MicroSemi AS73211 Precision Colour Sensor

Precision colour sensing made easy

Austrian MicroSemi recently divested itself of its transceiver portfolio, leaving standards such as AS-I stranded. Sensors were selected as the new main field of business, leading to the introduction of a few extremely interesting products such as the JENCOLOR colour sensor ICs.

In principle, the sensor is laid out according to the schemes shown in the two figures accompanying the screen. The main priority is that the part contains but three photo-diodes, all three of which are conveniently located behind a filter to eliminate unwanted spectral components.

The three diodes are located in seperate areas of the main die

AMS provides a relatively complex set of signal conditioning circuits

To clarify a few aspects: first of all, the AS73211 is strictly an one-pixel color detector – it has nothing to do with the traditional linear or two-dimensional CCD chips which are well-known from digital cameras. Secondarily, the chip’s intended usage is processes – think about quality control, sorting of goods and similar tasks where accurate color sampling is required.

Finally, the AS73211 is intended to reach extreme high accuracies – its internal DACs can work at 24bit if required.

When compared to a homebrew solution, benefits pop up. ADC linearity and temperature issues are handled by AMS – the chip contains various bits of logic which ensure that issues affecting resolution adversely are handled effectively.

Program me!

Getting data out of the part is accomplished via an insutry standard I2C connection. In the first step, both CREG1:GAIN and CREG1:TIME must be programmed to set up ADC gain and the time spent on the individual conversion cycles. In the next step, the remaining hardware must be configured – when done, actual measuring processes can be triggered. More information on this is readily available in the excellent datasheet, which is waiting for you here.
On development kits

Like most other optical systems, the AS73211 also puts demands on the accompanying optics. Developers working on sensor software are well-advised to start out by buying the (somewhat pricey) AS73211-AB5 SET DK development kit rather than the basic PCB version – the former comes with a complete optical assembly, thereby taking one bit of hassle off your neck.

Be careful when selecting your development kit – not all are created equal

Recent Articles
STSPIN32F0 – Series
Extremely integrated STM32-based system-in-package solution for driving three-phase BLDC motors We would like to introduce you to ST’s growing portfolio of STSPIN32F0 devices. Embedding a 32-bit ARM... Read Article
Enter for your chance to win a Digilent Dev Board worth over $500
To celebrate our 10 Year Anniversary this month and to thank everyone for their support over the last decade, we’ve partnered with Digilent to give away 2x Digilent development boards... Read Article
Efficient High-Power Gallium Nitride FETs from Nexperia
Whether designing a motor drive/controller for the next generation of battery-electric vehicles, or a power supply for the latest 5G telecommunication networks, Nexperia’s GaN FETs will be key... Read Article
Debug your embedded systems from the home office
Use USB Logic Analyzer and Pattern Generator to debug, visualize, and simulate signals in digital systems The quarantines are forcing an increasing number of engineers and... Read Article
Learn more about Optocoupler Design for EMI Immunity by Broadcom & EBV
Join the IEEE Webinar on 26th May, 4pm CET – Optocoupler Design for EMI Immunity Also available on demand This webinar takes a close look into... Read Article
6 use cases for adaptable technology and its impact on automotive trends
Overcome technological complexity in automotive design with Xilinx and Avnet Silica The automotive industry is a highly competitive space. In the blink of an eye, a... Read Article